

Improving Member States preparedness to face an HNS pollution of the Marine System (HNS-MS)

HNS-MS far field model Focus on timescales from 1 to 5 days & transport

What the model has to do?

GAS (Vapour pr	essure > 101.3	kPa at 20 °C)
	6	60

10%

SINKING	LIQUIDS	density	> seawater))

	s	SD	D or DE if VP>10kPa
Solubility	C	.1%	5%

FLOATING LIQUIDS	(density < seawater)
------------------	----------------------

Solubility

FLOATING SOLIDS (density < seawater)

	F	FD	D
Solubility	1	0%	100%

SINKING SOLIDS (density > seawater)

	S	SD	D
Solubility	10	0%	100%

Evaporator-Floater-Dissolver from a subsurface source

Far-field model still based on the Lagrangian particles tracking method

- Pollution is represented by a cloud of Lagrangian particles that moves independently from each other due to wind, waves & currents
- Random walk approach to model turbulence diffusion and surface slick spreading
- Position of the particle in the water column
 - At sea surface
 - In the water column
 - At the sea bed
 - Entrainment (function of waves, HNS viscosity)
 - resuspension (function of bottom current speed and HNS viscosity)

Persistant floater

Floater-dissolver

HNS behaviour – Environmental conditions

Fate & bahaviour

- Each particle represents a fraction of the total HNS volume;
- Each HNS mass fraction may be in several phase as a function of the particle history
 - Need to keep track of the mass fraction history in
 - Liquid phase
 - Solid phase,
 - Evaporated phase,
 - Dissolved phase
 - Need to know the dominant phase
 - Need to keep track of the droplets size distribution
- Every hour, redistribution of the different mass fraction between the neighbouring particles

86 6 89 89		- <u>6</u> - 7 - 6 6
	0 0 0	00
	0 0 0	•

Impacted area (forecast)

Full trajectory (forecast)

Snapshot of particles & trajectory

Impacted area (backtrack)

Full trajectory (backtrack)

חואס-אוס stakenotuers meeting | סועssets, ספוקועווו - גס-14th December 2016

Impacted area

Maximum probability of presence

Snapshot of probability of presence

Concentration

Co-funded by the European Commission, DG-ECHO

Exposure time

Global exposure time to 10 ppm

Beaching risk

First beaching time

Beaching risk

Vertical distribution

Co-funded by the European Commission, DG-ECHO

Mass balance

Co-funded by the European Commission, DG-ECHO