

Improving Member States preparedness to face an HNS pollution of the Marine System (HNS-MS)

Session 2 Characterising HNS

CEDRE

Stéphane Le Floch Sophie Chataing-Pariaud

Few words on

- Need of a database adapted to the HNS-MS project (specific gravity, viscosity, evaporation / vapour pressure and solubility)
- Selection of HNS (the most relevant)
 - Criteria
 - List of HNS (120)
- Laboratory characterisation
 - Selection of HNS (19)
 - Physical and chemical properties tested
 - Results

Selection of HNS – Criteria

- Transport at sea in the Bonn Agreement area
- Representativeness in the SEBC (E, F, D and S)
- Toxicity for Humans and impact on the marine environment
- Gas not taken into account

Selection of HNS – Criteria

 \rightarrow Cross-check of HNS lists issued from :

- HASREP Mar-CIS GESAMP / EHS
- Be Aware ARCOPOL
- And "fresh" data from French and Finnish harbours
- \rightarrow Selection of the HNS classified by repetition
- → Mainly pure chemical substances but also some blended substances

Selection of 120 HNS – List

Laboratory characterisation – selection of 19 HNS

Part of the 100+ HNS listing

HNS	CAS number	SEBC code
2,2,4-Trimethyl-1,3-Pentanediol-1-Isobutyrate	25265-77-4	F
2-Ethylhexanoic acid	149-57-5	FD
2-Ethylhexyl acrylate	103-11-7	F
2-propanol	67-63-0	D
Acétone	67-64-1	DE
Butyl acrylate	141-32-2	E
Ethyl acetate	141-78-6	DE
Heptane	142-82-5	E
Hydrochloric acid	7647-01-0	DE
Methanol	67-56-1	DE
Methyl isobutyl ketone	108-10-1	FED
Methyl methacrylate	80-62-6	FED
Methyl tert butyl ether	1634-04-4	ED
n-Butyl acetate	123-86-4	FED
n-Butyl alcohol	71-36-3	D
n-Hexane	110-54-3	E
Nonyl alcohol (all isomers)	2430-22-0	F
Pentane	109-66-0	E
Toluene	108-88-3	E
Xylenes	1330-20-7	FE

Laboratory characterisation – Properties tested

- Specific gravity
- Viscosity At 5 / 10 / 20 °C
- Surface tension

- Interfacial tension (HNS/seawater)
- Evaporation kinetics: pure HNS and a "slick" of HNS • on seawater
- **Dissolution kinetics:** 20 °C freshwater, 5‰ and 35‰

• Specific gravity

HNS	5 °C	10 °C	20 °C
1-Nonanol	0,8383	0,8348	0,8291
2,2,4-Trimethyl-1,3-Pentanediol-1-Isobutyrate	0,9577	0,9542	0,9477
2-Ethylhexanoic acid	0,9173	0,9142	0,9061
2-Ethylhexyl acrylate	0,897	0,8918	0,8861
2-Propanol	0,7875	0,7946	0,7946
Acetone	0,807	0,8018	0,7918
Butyl acrylate	0,9131	0,9085	0,9001
Ethyl acetate	0,9181	0,9119	0,902
Heptane	0,6971	0,6938	0,6853
Methanol	0,8055	0,8013	0,7932
Methyl isobutyl ketone	0,8145	0,8102	0,8031
Methyl methacrylate	0,9574	0,9534	0,9438
Methyl tert-butyl ether	0,7574	0,7527	0,7531
n-Butyl acetate	0,896	0,8916	0,881
n-Butyl alcohol	0,8213	0,8179	0,8116
n-Hexane	0,6753	0,6696	0,6613
Pentane	0,6429	0,6384	0,6278
Toluene	0,8809	0,8757	0,8683
Xylenes	0,879	0,8743	0,8677

Experimental data at
20 °C are in accordance
with literature data (less
than 2% of gaps).

- Decrease in temperature results in an increase of specific gravity: difference of 1 to 2 % between 5 and 20 °C.

Specific gravity

- Floatability (floater, sinker versus Temperature)
- For different experimental conditions (closed to the natural environment), gaps are less than 2%
- Possible to accept this gap in the modelling tool,
- No need to maintain our efforts on this parameter

• Viscosity

HNS	Viscosity (mPa.s)		
	5°C	10°C	20°C
1-Nonanol	15,25	18,77	12,39
2,2,4-Trimethyl-1,3-Pentanediol-1-Isobutyrate	45,52	33,37	18,95
2-Ethylhexanoic acid	16,43	12,83	8,41
2-Ethylhexyl acrylate	3,99	3,73	5 <i>,</i> 55
2-Propanol	4,44	3,63	3,51
Acetone	1,28	1,16	1,36
Butyl acrylate	2 <i>,</i> 58	2,5	2,36
Ethyl acetate	1,63	1,63	1,59
Heptane	1,42	1,38	1,33
Methanol	1,95	1,79	1,6
Methyl isobutyl ketone	1,9	2,31	1,78
Methyl methacrylate	2,11	2,03	1,82
Methyl tert-butyl ether	1,33	1,32	1,14
n-Butyl acetate	2,42	2,25	2,06
n-Butyl alcohol	4,78	9,79	3,88
n-Hexane	1,21	1,04	1,12
Pentane	0,86	0,85	0,62
Toluene	1,98	1,81	1,81
Xylenes	2,1	2,03	1,91

Experimental data at 20 °C are
in accordance with literature
data for HNS with
viscosity > 3 mPa.s

Difficulties of measurements for viscosities < 3 mPa.s

- Usually, decrease in T° results in an increase of viscosity.

Viscosity

- Spreading (size of the slick versus Temperature)
- For viscosity higher than 8 mPa.s at 20°C, the viscosity at 5°C increases by a factor of 2 (at least!)
- Uncertainties for a viscosity less than 3 mPa.s at 20°C, need to adapt the experimental protocol

Need to maintain our efforts on this parameter

Surface tension

HNS	Surface tension (mN.m ⁻¹)		
	5°C	10°C	20°C
1-Nonanol	28,91	28,02	27,8
2,2,4-Trimethyl-1,3-Pentanediol-1-Isobutyrate	29 <i>,</i> 46	28,73	28,12
2-Ethylhexanoic acid	28,42	27,62	26,86
2-Ethylhexyl acrylate	27,91	27,68	26,82
2-Propanol	21,44	21	20,79
Acetone	24,9	24,14	23,44
Butyl acrylate	26,77	26,56	25,63
Ethyl acetate	25,08	24,39	23,82
Heptane	21,6	21,08	20,32
Methanol	23,88	23,06	22,67
Methyl isobutyl ketone	24,47	23,73	23,61
Methyl methacrylate	27,77	27,1	25,99
Methyl tert-butyl ether	20,04	19,07	18,06
n-Butyl acetate	25,8	25,02	24,83
n-Butyl alcohol	25,71	24,9	24,25
n-Hexane	19,92	19,09	18,6
Pentane	17,55	16,77	16,43
Toluene	29,8	28,66	28,01
Xylenes	29,04	27,88	26,96

- Experimental data at 20 °C are in accordance with literature data.

Decrease in temperature results in an increase of surface tension: difference of 3 to 10 % between 5 and 20 °C.

- Interfacial tension data are being processed.

• Evaporation kinetics – HNS (weight loss measurement / 7 mL at T0)

Evaporation kinetics – HNS at sea surface

Data processing in progress

- Acetone = miscible with water

- Lower evaporation rate when in surface due to the competition between evaporation and dissolution

Evaporation rate

- Surface tension increases as the temperature drops, decrease in the evaporation rate
- Vapor pressure and evaporation are well correlated
- Evaporation rate is lower when the product is at the water interface
- Need to maintain our efforts on this parameter

• Dissolution kinetics - Protocol:

For each HNS, at a defined temperature and salinity, 3 replicates

- Volume of HNS defined in order to be above the theoretical solubility limit

- Sampling of 10 mL of water followed by GC-FID or GC-MS analysis

- Experiment continued until a stable concentration is reached

{HNS-MS} Improving Member States preparedness to face an HNS pollution of the Marine System

Laboratory characterisation – Results

• Dissolution kinetics

Experiments still in progress

Dissolution rate

- For a chemical, wide range of solubility limit in the literature
- For acids and dissolvers, the salinity decreases the limit of solubility
- Effect of the temperature on the solubility limit?
- Need to maintain our efforts on this parameter

Conclusions

- Huge amount of tests performed at lab
- Good correlation between our results and the scientific literature (at 20°C and for fresh water)
- Significant effect of the temperature on the surface tension, which is involved in the evaporation rate
- 2 evaporation rates: HNS alone or HNS on water
- For some HNS, the dissolution can be affected by the salinity

Need to perform experiments at a pilot scale to characterise the dissolution rate and the evaporation rate simultaneously

{HNS-MS} Improving Member States preparedness to face an HNS pollution of the Marine System

Thank You

Improving Member States preparedness to face an HNS pollution of the Marine System (HNS-MS)

http://www.hns-ms.eu/

Co-funded by the European Commission, DG-ECHO

Conference name City, Country > <date/time>