

Improving Member States preparedness to face an HNS pollution of the Marine System (HNS-MS)

## HNS-MS stakeholders meeting

### Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

DG-ECHO civil protection funding mechanism 2014 Call for Prevention and Preparedness





Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

Some HNS are evaporators (E) and present a **risk for human health** at surface :

- Operating people/staff on boats
- Helicopter/aircraft pilots
- Civilians on the coast

### Goals :

- Cover all natural compartments affected by pollutant
- Provide a first line information
- Use of a simple, fast and efficient tool to evaluate the gas concentration

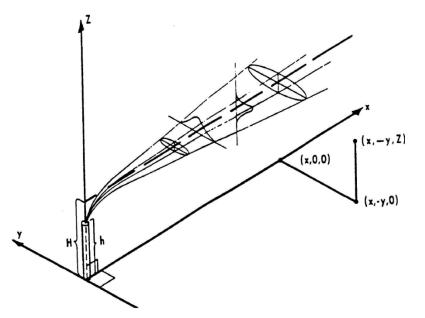


- CHEMADEL : <u>CHEM</u>ical <u>A</u>tmospheric <u>D</u>ispersion mod<u>EL</u>
- Simulation of **gas fate** in the atmosphere
- Integration in the decision support system prototype : The HNS-MS far-field model provide a source term to CHEMADEL



- Scenario key parameters for CHEMADEL:
  - Simulation time
  - Location
  - HNS evaporation rate
  - Environmental conditions for the atmosphere
    - Wind velocities, cloud coverage
  - Options




- Gaussian models
  - Oldest but simplest models, against CFD and integral models
  - It provides the concentration values in the atmosphere depending of elapsed time and distance from source by solving the transport equation :

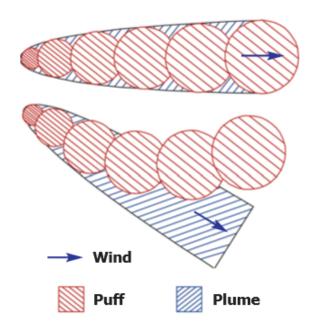
$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} = \frac{\partial}{\partial x} \left[ K_x \frac{\partial C}{\partial x} \right] + \frac{\partial}{\partial y} \left[ K_y \frac{\partial C}{\partial y} \right] + \frac{\partial}{\partial z} \left[ K_z \frac{\partial C}{\partial z} \right] + S + R$$

- By making assumptions, analytical solutions are obtained for :
  - Punctual instantaneous emission of gas
  - Punctual long term gas puffs emission
  - Punctual long term gas plume emission

Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

- Gaussian models (2)
  - The source term is provided by a flow rate
  - The gas concentration follows a Gaussian distribution law in space




Concentration Gaussian profile in a passive gas plume (Turner, 1970)

- Gaussian puff model assumptions
  - Molecular diffusion is negligible
  - Gas is passive or neutral (density close to air, or is very diluted)
  - Gas temperature is similar to atmospheric temperature
  - Turbulence is homogeneous and isotropic
  - Ground is homogenous with a low relief
  - Initial release velocity is considered as null
  - Validity domain : 100m 10km



Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

- Advantages of the Gaussian puff model
  - Puffs are source-independent
  - Wind field variability (including coastal effects)



Illustrations of Gaussian puff and plume models

Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

- Concentration evaluation at a point (*x*, *y*, *z*)
  - A large number of puffs is necessary to model the continuous release = A puff generated each second
  - Calculated from the summation of all puffs contribution

$$C(x, y, z, t) = \sum_{i=1}^{n} C_{i}(x, y, z, t_{i})$$

$$= \sum_{i=1}^{n} \left( \frac{m_{i}}{(2\pi)^{2/3} \sigma_{x_{i}} \sigma_{y_{i}} \sigma_{z_{i}}} \right) \times exp \left( -\frac{[x - x_{0} - u(t - t_{i})]^{2}}{2\sigma_{x_{i}}^{2}} - \frac{[y - y_{0} - v(t - t_{i})]^{2}}{2\sigma_{y_{i}}^{2}} \right)$$

$$\times \left[ exp \left( -\frac{[z - z_{0} - w(t - t_{i})]^{2}}{2\sigma_{z_{i}}^{2}} \right) + \alpha exp \left( -\frac{[z + z_{0} + w(t - t_{i})]^{2}}{2\sigma_{z_{i}}^{2}} \right) \right]$$

-  $x_0$ ,  $y_0$ ,  $z_0$  the release location (m),  $m_i$  the initial mass (kg), t- $t_i$  the *ith* puff age (s),  $\alpha$  the ground reflection coefficient,  $\sigma$  standard deviation coefficients (m)

Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

- Standard deviation coefficients
  - Use of the correlation of Pasquill-Turner
    - The Pasquill's atmospheric stability classes determined from environmental conditions : wind field, solar insolation and cloud coverage index

| Wind<br>speed     | Day              |          |        | Night       |       |
|-------------------|------------------|----------|--------|-------------|-------|
| At 10             | Solar insolation |          |        | Cloud cover |       |
| meters<br>(m.s-1) | Strong           | Moderate | Slight | > 50%       | < 50% |
| < 2               | А                | A - B    | В      | Е           | F     |
| 2 - 3             | A – B            | В        | С      | E           | F     |
| 3 - 5             | В                | B – C    | С      | D           | Е     |
| 5 - 6             | С                | C – D    | D      | D           | D     |
| > 6               | С                | D        | D      | D           | D     |

| Stability classes   | Mark |  |
|---------------------|------|--|
| Extremely instable  | А    |  |
| Moderately instable | В    |  |
| Instable            | С    |  |
| Neutral             | D    |  |
| Stable              | E    |  |
| Moderately stable   | F    |  |
| Extremely stable    | G    |  |

Turner and Pasquill stability classes

• Coefficients deduced from empirical relationship based on experimental data



Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

- Output data
  - Generation of netCDF file that contains gas concentration for three elevations : 1m, 10m and 50m

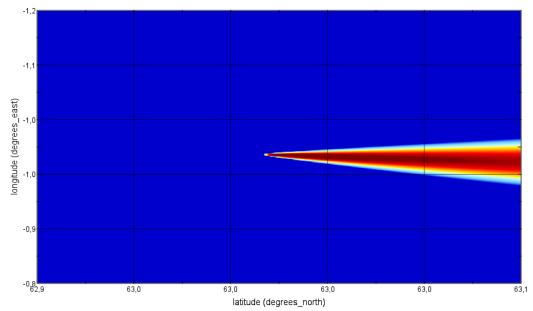
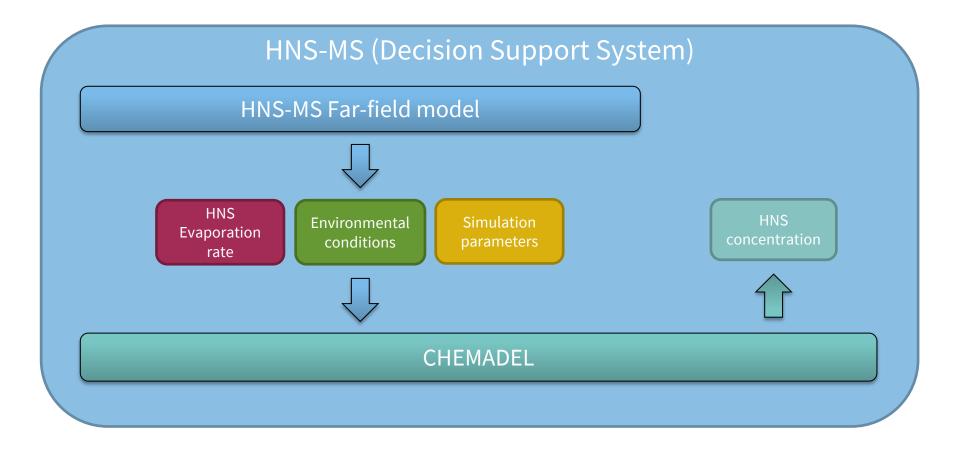




Illustration of gas concentration in the atmosphere (capture from NASA/GISS Panoply)

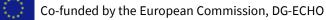
Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

HNS-MS / CHEMADEL models interface





- CHEMADEL technical description:
  - Programming languages : C++, Qt Framework
  - 64 bits executable binary
  - OS: Debian 8 64 bits, Windows 7 64 bits






#### Session 5 : Modelling HNS behaviour in the marine environment The atmospheric dispersion model CHEMADEL

## Thank you for your attention

# Any questions ?



HNS-MS stakeholders meeting Brussels – Belgium > 14/12/2106